rgb-cln/common/sphinx.c

876 lines
25 KiB
C
Raw Normal View History

#include "config.h"
#include <assert.h>
#include <ccan/array_size/array_size.h>
#include <ccan/crypto/ripemd160/ripemd160.h>
#include <ccan/crypto/sha256/sha256.h>
#include <ccan/mem/mem.h>
#include <common/node_id.h>
#include <common/onion.h>
#include <common/onionreply.h>
#include <common/sphinx.h>
#include <common/utils.h>
#include <err.h>
#include <secp256k1_ecdh.h>
#include <sodium/crypto_stream_chacha20.h>
#include <wire/wire.h>
#define BLINDING_FACTOR_SIZE 32
#define ONION_REPLY_SIZE 256
#define RHO_KEYTYPE "rho"
struct hop_params {
struct secret secret;
u8 blind[BLINDING_FACTOR_SIZE];
struct pubkey ephemeralkey;
};
struct keyset {
struct secret pi, mu, rho, gamma;
};
/* Encapsulates the information about a given payment path for the the onion
* routing algorithm.
*/
struct sphinx_path {
/* The session_key used to generate the shared secrets along the
* path. This MUST be generated in a cryptographically secure manner,
* and is exposed solely for testing, i.e., it can be set to known
* values in unit tests. If unset it'll be generated during the packet
* generation. */
struct secret *session_key;
/* The associated data is appended to the packet when generating the
* HMAC, but is not passed along as part of the packet. It is used to
* ensure some external data (HTLC payment_hash) is not modified along
* the way. */
u8 *associated_data;
/* The individual hops on this route. */
struct sphinx_hop *hops;
/* If this is a rendez-vous onion, then the following node_id tells us
* which node will be processing this onion and decompressing the
* onion. It is used to generate the prefill obfuscation stream to
* hide the fact that the onion was compressed from the next
* node. NULL if this is not a rendez-vous onion, and shouldn't be
* compressible. */
struct pubkey *rendezvous_id;
};
struct sphinx_path *sphinx_path_new(const tal_t *ctx, const u8 *associated_data)
{
struct sphinx_path *sp = tal(ctx, struct sphinx_path);
sp->associated_data = tal_dup_talarr(sp, u8, associated_data);
sp->session_key = NULL;
sp->rendezvous_id = NULL;
sp->hops = tal_arr(sp, struct sphinx_hop, 0);
return sp;
}
struct sphinx_path *sphinx_path_new_with_key(const tal_t *ctx,
const u8 *associated_data,
const struct secret *session_key)
{
struct sphinx_path *sp = sphinx_path_new(ctx, associated_data);
sp->session_key = tal_dup(sp, struct secret, session_key);
return sp;
}
bool sphinx_path_set_rendezvous(struct sphinx_path *sp,
const struct node_id *rendezvous_id)
{
if (rendezvous_id == NULL) {
sp->rendezvous_id = tal_free(sp->rendezvous_id);
return true;
} else {
sp->rendezvous_id = tal_free(sp->rendezvous_id);
sp->rendezvous_id = tal(sp, struct pubkey);
return pubkey_from_node_id(sp->rendezvous_id, rendezvous_id);
}
}
static size_t sphinx_hop_size(const struct sphinx_hop *hop)
{
return tal_bytelen(hop->raw_payload) + HMAC_SIZE;
}
size_t sphinx_path_payloads_size(const struct sphinx_path *path)
{
size_t size = 0;
for (size_t i=0; i<tal_count(path->hops); i++)
size += sphinx_hop_size(&path->hops[i]);
return size;
}
void sphinx_add_hop(struct sphinx_path *path, const struct pubkey *pubkey,
const u8 *payload TAKES)
{
struct sphinx_hop sp;
sp.raw_payload = tal_dup_talarr(path, u8, payload);
sp.pubkey = *pubkey;
tal_arr_expand(&path->hops, sp);
}
/* Small helper to append data to a buffer and update the position
* into the buffer
*/
static void write_buffer(u8 *dst, const void *src, const size_t len, int *pos)
{
memcpy(dst + *pos, src, len);
*pos += len;
}
u8 *serialize_onionpacket(
const tal_t *ctx,
const struct onionpacket *m)
{
u8 *dst = tal_arr(ctx, u8, TOTAL_PACKET_SIZE(tal_bytelen(m->routinginfo)));
u8 der[PUBKEY_CMPR_LEN];
int p = 0;
pubkey_to_der(der, &m->ephemeralkey);
write_buffer(dst, &m->version, 1, &p);
write_buffer(dst, der, sizeof(der), &p);
write_buffer(dst, m->routinginfo, tal_bytelen(m->routinginfo), &p);
write_buffer(dst, m->hmac.bytes, sizeof(m->hmac.bytes), &p);
return dst;
}
struct onionpacket *parse_onionpacket(const tal_t *ctx,
const u8 *src,
const size_t srclen,
enum onion_wire *failcode)
{
struct onionpacket *dest = tal(ctx, struct onionpacket);
const u8 *cursor = src;
size_t max = srclen;
dest->version = fromwire_u8(&cursor, &max);
if (dest->version != 0x00) {
// FIXME add logging
*failcode = WIRE_INVALID_ONION_VERSION;
return tal_free(dest);
}
fromwire_pubkey(&cursor, &max, &dest->ephemeralkey);
if (cursor == NULL) {
*failcode = WIRE_INVALID_ONION_KEY;
return tal_free(dest);
}
/* If max underflows, this returns NULL and fromwire fails. */
dest->routinginfo = fromwire_tal_arrn(dest, &cursor, &max,
max - HMAC_SIZE);
fromwire_hmac(&cursor, &max, &dest->hmac);
assert(max == 0);
if (cursor == NULL) {
*failcode = WIRE_INVALID_REALM;
return tal_free(dest);
}
return dest;
}
/*
* Generate a pseudo-random byte stream of length `dstlen` from key `k` and
* store it in `dst`. `dst must be at least `dstlen` bytes long.
*/
static void generate_cipher_stream(void *dst, const struct secret *k, size_t dstlen)
{
const u8 nonce[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
crypto_stream_chacha20(dst, dstlen, nonce, k->data);
}
/* xor cipher stream into dst */
static void xor_cipher_stream(void *dst, const struct secret *k, size_t dstlen)
{
const u8 nonce[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
crypto_stream_chacha20_xor(dst, dst, dstlen, nonce, k->data);
}
#define CHACHA20_BLOCK_BYTES 64
static void xor_cipher_stream_off(const struct secret *k,
size_t off,
void *dst, size_t dstlen)
{
const u8 nonce[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
u8 block[CHACHA20_BLOCK_BYTES];
size_t block_off;
size_t ic = off / CHACHA20_BLOCK_BYTES;
/* From https://libsodium.gitbook.io/doc/advanced/stream_ciphers/chacha20:
*
* The crypto_stream_chacha20_xor_ic() function is similar to
* crypto_stream_chacha20_xor() but adds the ability to set
* the initial value of the block counter to a non-zero value,
* ic.
*
* This permits direct access to any block without having to
* compute the previous ones.
*/
block_off = (off % CHACHA20_BLOCK_BYTES);
if (block_off != 0) {
size_t rem = CHACHA20_BLOCK_BYTES - block_off;
if (rem > dstlen)
rem = dstlen;
memcpy(block + block_off, dst, rem);
crypto_stream_chacha20_xor_ic(block, block, block_off + rem,
nonce,
ic,
k->data);
ic++;
memcpy(dst, block + block_off, rem);
dst = (char *)dst + rem;
dstlen -= rem;
}
crypto_stream_chacha20_xor_ic(dst, dst, dstlen, nonce, ic, k->data);
}
/* Convenience function: s2/s2len can be NULL/0 if unwanted */
static void compute_hmac(const struct secret *key,
const u8 *s1, size_t s1len,
const u8 *s2, size_t s2len,
struct hmac *hmac)
{
crypto_auth_hmacsha256_state state;
hmac_start(&state, key->data, sizeof(key->data));
hmac_update(&state, s1, s1len);
hmac_update(&state, s2, s2len);
hmac_done(&state, hmac);
}
static void compute_packet_hmac(const struct onionpacket *packet,
const u8 *assocdata, const size_t assocdatalen,
const struct secret *mukey,
struct hmac *hmac)
{
compute_hmac(mukey,
packet->routinginfo, tal_bytelen(packet->routinginfo),
assocdata, assocdatalen,
hmac);
}
static void generate_header_padding(void *dst, size_t dstlen,
size_t fixed_size,
const struct sphinx_path *path,
struct hop_params *params)
{
struct secret key;
size_t fillerStart, fillerEnd, fillerSize;
memset(dst, 0, dstlen);
for (int i = 0; i < tal_count(path->hops) - 1; i++) {
subkey_from_hmac("rho", &params[i].secret, &key);
/* Sum up how many bytes have been used by previous hops,
* that gives us the start in the stream */
fillerSize = 0;
for (int j = 0; j < i; j++)
fillerSize += sphinx_hop_size(&path->hops[j]);
fillerStart = fixed_size - fillerSize;
/* The filler will dangle off of the end by the current
* hop-size, we'll make sure to copy it into the correct
* position in the next step. */
fillerEnd = fixed_size + sphinx_hop_size(&path->hops[i]);
/* Apply the cipher-stream to the part of the filler that'll
* be added by this hop */
xor_cipher_stream_off(&key, fillerStart,
dst, fillerEnd - fillerStart);
}
}
static void generate_prefill(void *dst, size_t dstlen,
size_t fixed_size,
const struct sphinx_path *path,
struct hop_params *params)
{
struct secret key;
size_t fillerStart, fillerSize;
memset(dst, 0, dstlen);
for (int i = 0; i < tal_count(path->hops); i++) {
subkey_from_hmac("rho", &params[i].secret, &key);
/* Sum up how many bytes have been used by previous hops,
* that gives us the start in the stream */
fillerSize = 0;
for (int j = 0; j < i; j++)
fillerSize += sphinx_hop_size(&path->hops[j]);
fillerStart = fixed_size - fillerSize - dstlen;
/* Apply the cipher-stream to the part of the filler that'll
* be added by this hop */
xor_cipher_stream_off(&key, fillerStart, dst, dstlen);
}
}
static void compute_blinding_factor(const struct pubkey *key,
const struct secret *sharedsecret,
u8 res[BLINDING_FACTOR_SIZE])
{
struct sha256_ctx ctx;
u8 der[PUBKEY_CMPR_LEN];
struct sha256 temp;
pubkey_to_der(der, key);
sha256_init(&ctx);
sha256_update(&ctx, der, sizeof(der));
sha256_update(&ctx, sharedsecret->data, sizeof(sharedsecret->data));
sha256_done(&ctx, &temp);
memcpy(res, &temp, 32);
}
static bool blind_group_element(struct pubkey *blindedelement,
const struct pubkey *pubkey,
const u8 blind[BLINDING_FACTOR_SIZE])
{
/* tweak_mul is inplace so copy first. */
if (pubkey != blindedelement)
*blindedelement = *pubkey;
if (secp256k1_ec_pubkey_tweak_mul(secp256k1_ctx,
&blindedelement->pubkey, blind) != 1)
return false;
return true;
}
bool sphinx_create_shared_secret(struct secret *privkey,
const struct pubkey *pubkey,
const struct secret *secret)
{
if (secp256k1_ecdh(secp256k1_ctx, privkey->data, &pubkey->pubkey,
secret->data, NULL, NULL) != 1)
return false;
return true;
}
bool onion_shared_secret(
struct secret *secret,
const struct onionpacket *packet,
const struct privkey *privkey)
{
return sphinx_create_shared_secret(secret, &packet->ephemeralkey,
&privkey->secret);
}
static void generate_key_set(const struct secret *secret,
struct keyset *keys)
{
subkey_from_hmac("rho", secret, &keys->rho);
subkey_from_hmac("pi", secret, &keys->pi);
subkey_from_hmac("mu", secret, &keys->mu);
subkey_from_hmac("gamma", secret, &keys->gamma);
}
static struct hop_params *generate_hop_params(
const tal_t *ctx,
const u8 *sessionkey,
struct sphinx_path *path)
{
int i, j, num_hops = tal_count(path->hops);
struct pubkey temp;
u8 blind[BLINDING_FACTOR_SIZE];
struct hop_params *params = tal_arr(ctx, struct hop_params, num_hops);
/* Initialize the first hop with the raw information */
if (secp256k1_ec_pubkey_create(secp256k1_ctx,
&params[0].ephemeralkey.pubkey,
path->session_key->data) != 1)
return NULL;
if (!sphinx_create_shared_secret(
&params[0].secret, &path->hops[0].pubkey, path->session_key))
return NULL;
compute_blinding_factor(
&params[0].ephemeralkey, &params[0].secret,
params[0].blind);
/* Recursively compute all following ephemeral public keys,
* secrets and blinding factors
*/
for (i = 1; i < num_hops; i++) {
if (!blind_group_element(
&params[i].ephemeralkey,
&params[i - 1].ephemeralkey,
params[i - 1].blind))
return NULL;
/* Blind this hop's point with all previous blinding factors
* Order is indifferent, multiplication is commutative.
*/
memcpy(&blind, sessionkey, 32);
temp = path->hops[i].pubkey;
if (!blind_group_element(&temp, &temp, blind))
return NULL;
for (j = 0; j < i; j++)
if (!blind_group_element(
&temp,
&temp,
params[j].blind))
return NULL;
/* Now hash temp and store it. This requires us to
* DER-serialize first and then skip the sign byte.
*/
u8 der[PUBKEY_CMPR_LEN];
pubkey_to_der(der, &temp);
struct sha256 h;
sha256(&h, der, sizeof(der));
memcpy(&params[i].secret, &h, sizeof(h));
compute_blinding_factor(
&params[i].ephemeralkey,
&params[i].secret, params[i].blind);
}
return params;
}
static void sphinx_write_frame(u8 *dest, const struct sphinx_hop *hop)
{
memcpy(dest, hop->raw_payload, tal_bytelen(hop->raw_payload));
memcpy(dest + tal_bytelen(hop->raw_payload),
hop->hmac.bytes, sizeof(hop->hmac.bytes));
}
static void sphinx_prefill_stream_xor(u8 *dst, size_t dstlen,
const struct secret *shared_secret)
{
struct secret padkey;
subkey_from_hmac("prefill", shared_secret, &padkey);
xor_cipher_stream(dst, &padkey, dstlen);
}
static void sphinx_prefill(u8 *routinginfo, const struct sphinx_path *sp,
size_t prefill_size, struct hop_params *params,
size_t fixed_size)
{
int num_hops = tal_count(sp->hops);
size_t fillerSize = sphinx_path_payloads_size(sp) -
sphinx_hop_size(&sp->hops[num_hops - 1]);
size_t last_hop_size = sphinx_hop_size(&sp->hops[num_hops - 1]);
int prefill_offset =
fixed_size - fillerSize - last_hop_size - prefill_size;
struct secret shared_secret;
/* Generate the prefill stream, which cancels out the layers of
* encryption that will be applied while wrapping the onion. This
* leaves the middle, unused, section with all 0x00 bytes after
* encrypting. */
generate_prefill(routinginfo + prefill_offset, prefill_size,
fixed_size, sp, params);
/* Now fill in the obfuscation stream, which can be regenerated by the
* node processing this onion. */
sphinx_create_shared_secret(&shared_secret, sp->rendezvous_id, sp->session_key);
sphinx_prefill_stream_xor(routinginfo + prefill_offset, prefill_size, &shared_secret);
}
struct onionpacket *create_onionpacket(
const tal_t *ctx,
struct sphinx_path *sp,
size_t fixed_size,
struct secret **path_secrets
)
{
struct onionpacket *packet = talz(ctx, struct onionpacket);
int i, num_hops = tal_count(sp->hops);
size_t fillerSize = sphinx_path_payloads_size(sp) -
sphinx_hop_size(&sp->hops[num_hops - 1]);
u8 *filler;
struct keyset keys;
struct secret padkey;
struct hmac nexthmac;
struct hop_params *params;
struct secret *secrets = tal_arr(ctx, struct secret, num_hops);
size_t payloads_size = sphinx_path_payloads_size(sp);
size_t max_prefill = fixed_size - payloads_size;
if (sphinx_path_payloads_size(sp) > fixed_size) {
tal_free(packet);
tal_free(secrets);
return NULL;
}
packet->routinginfo = tal_arr(packet, u8, fixed_size);
if (sp->session_key == NULL) {
sp->session_key = tal(sp, struct secret);
randombytes_buf(sp->session_key, sizeof(struct secret));
}
params = generate_hop_params(ctx, sp->session_key->data, sp);
if (!params) {
tal_free(packet);
tal_free(secrets);
return NULL;
}
packet->version = 0;
memset(nexthmac.bytes, 0, sizeof(nexthmac.bytes));
/* BOLT #4:
*
* The packet is initialized with 1300 _random_ bytes derived from a
* CSPRNG
*/
/* Note that this is just hop_payloads: the rest of the packet is
* overwritten below or above anyway. */
subkey_from_hmac("pad", sp->session_key, &padkey);
generate_cipher_stream(packet->routinginfo, &padkey, fixed_size);
filler = tal_arr(tmpctx, u8, fillerSize);
generate_header_padding(filler, tal_bytelen(filler), fixed_size, sp, params);
if (sp->rendezvous_id != NULL)
/* FIXME: Fuzz this or expose to the caller to hide encoded
* route length. */
sphinx_prefill(packet->routinginfo, sp, max_prefill, params,
fixed_size);
for (i = num_hops - 1; i >= 0; i--) {
sp->hops[i].hmac = nexthmac;
generate_key_set(&params[i].secret, &keys);
/* Rightshift mix-header by FRAME_SIZE */
size_t shiftSize = sphinx_hop_size(&sp->hops[i]);
memmove(packet->routinginfo + shiftSize, packet->routinginfo,
fixed_size - shiftSize);
sphinx_write_frame(packet->routinginfo, &sp->hops[i]);
xor_cipher_stream(packet->routinginfo, &keys.rho,
fixed_size);
if (i == num_hops - 1) {
memcpy(packet->routinginfo + fixed_size - fillerSize, filler, fillerSize);
}
compute_packet_hmac(packet, sp->associated_data, tal_bytelen(sp->associated_data), &keys.mu,
&nexthmac);
}
packet->hmac = nexthmac;
packet->ephemeralkey = params[0].ephemeralkey;
for (i=0; i<num_hops; i++) {
secrets[i] = params[i].secret;
}
*path_secrets = secrets;
return packet;
}
#if DEVELOPER
bool dev_fail_process_onionpacket;
#endif
/*
2017-12-28 13:41:54 +00:00
* Given an onionpacket msg extract the information for the current
* node and unwrap the remainder so that the node can forward it.
*/
struct route_step *process_onionpacket(
const tal_t *ctx,
const struct onionpacket *msg,
const struct secret *shared_secret,
const u8 *assocdata,
const size_t assocdatalen,
bool has_realm
)
{
struct route_step *step = talz(ctx, struct route_step);
struct hmac hmac;
struct keyset keys;
u8 blind[BLINDING_FACTOR_SIZE];
u8 *paddedheader;
size_t payload_size;
bigsize_t shift_size;
bool valid;
step->next = talz(step, struct onionpacket);
step->next->version = msg->version;
generate_key_set(shared_secret, &keys);
compute_packet_hmac(msg, assocdata, assocdatalen, &keys.mu, &hmac);
if (!hmac_eq(&msg->hmac, &hmac)
|| IFDEV(dev_fail_process_onionpacket, false)) {
/* Computed MAC does not match expected MAC, the message was modified. */
return tal_free(step);
}
//FIXME:store seen secrets to avoid replay attacks
paddedheader = tal_arrz(step, u8, tal_bytelen(msg->routinginfo)*2);
memcpy(paddedheader, msg->routinginfo, tal_bytelen(msg->routinginfo));
xor_cipher_stream(paddedheader, &keys.rho, tal_bytelen(paddedheader));
compute_blinding_factor(&msg->ephemeralkey, shared_secret, blind);
if (!blind_group_element(&step->next->ephemeralkey, &msg->ephemeralkey, blind))
return tal_free(step);
payload_size = onion_payload_length(paddedheader,
tal_bytelen(msg->routinginfo),
has_realm,
&valid, NULL);
/* Can't decode? Treat it as terminal. */
if (!valid) {
shift_size = payload_size;
memset(step->next->hmac.bytes, 0, sizeof(step->next->hmac.bytes));
} else {
assert(payload_size <= tal_bytelen(msg->routinginfo) - HMAC_SIZE);
/* Copy hmac */
shift_size = payload_size + HMAC_SIZE;
memcpy(step->next->hmac.bytes,
paddedheader + payload_size, HMAC_SIZE);
}
step->raw_payload = tal_dup_arr(step, u8, paddedheader, payload_size, 0);
/* Left shift the current payload out and make the remainder the new onion */
step->next->routinginfo = tal_dup_arr(step->next,
u8,
paddedheader + shift_size,
tal_bytelen(msg->routinginfo), 0);
if (memeqzero(step->next->hmac.bytes, sizeof(step->next->hmac.bytes))) {
step->nextcase = ONION_END;
} else {
step->nextcase = ONION_FORWARD;
}
tal_free(paddedheader);
return step;
}
struct onionreply *create_onionreply(const tal_t *ctx,
const struct secret *shared_secret,
const u8 *failure_msg)
{
size_t msglen = tal_count(failure_msg);
size_t padlen = ONION_REPLY_SIZE - msglen;
struct onionreply *reply = tal(ctx, struct onionreply);
u8 *payload = tal_arr(ctx, u8, 0);
struct secret key;
struct hmac hmac;
/* BOLT #4:
*
* The node generating the error message (_erring node_) builds a return
* packet consisting of
* the following fields:
*
* 1. data:
* * [`32*byte`:`hmac`]
* * [`u16`:`failure_len`]
* * [`failure_len*byte`:`failuremsg`]
* * [`u16`:`pad_len`]
* * [`pad_len*byte`:`pad`]
*/
towire_u16(&payload, msglen);
towire(&payload, failure_msg, msglen);
towire_u16(&payload, padlen);
towire_pad(&payload, padlen);
/* BOLT #4:
*
* The _erring node_:
* - SHOULD set `pad` such that the `failure_len` plus `pad_len` is
* equal to 256.
* - Note: this value is 118 bytes longer than the longest
* currently-defined message.
*/
assert(tal_count(payload) == ONION_REPLY_SIZE + 4);
/* BOLT #4:
*
* Where `hmac` is an HMAC authenticating the remainder of the packet,
* with a key generated using the above process, with key type `um`
*/
subkey_from_hmac("um", shared_secret, &key);
compute_hmac(&key, payload, tal_count(payload), NULL, 0, &hmac);
reply->contents = tal_arr(reply, u8, 0),
towire_hmac(&reply->contents, &hmac);
towire(&reply->contents, payload, tal_count(payload));
tal_free(payload);
return reply;
}
struct onionreply *wrap_onionreply(const tal_t *ctx,
const struct secret *shared_secret,
const struct onionreply *reply)
{
struct secret key;
struct onionreply *result = tal(ctx, struct onionreply);
/* BOLT #4:
*
* The erring node then generates a new key, using the key type `ammag`.
* This key is then used to generate a pseudo-random stream, which is
* in turn applied to the packet using `XOR`.
*
* The obfuscation step is repeated by every hop along the return path.
*/
subkey_from_hmac("ammag", shared_secret, &key);
result->contents = tal_dup_talarr(result, u8, reply->contents);
xor_cipher_stream(result->contents, &key, tal_bytelen(result->contents));
return result;
}
u8 *unwrap_onionreply(const tal_t *ctx,
const struct secret *shared_secrets,
const int numhops,
const struct onionreply *reply,
int *origin_index)
{
struct onionreply *r;
struct secret key;
struct hmac hmac;
const u8 *cursor;
u8 *final;
size_t max;
u16 msglen;
if (tal_count(reply->contents) != ONION_REPLY_SIZE + sizeof(hmac) + 4) {
return NULL;
}
r = new_onionreply(tmpctx, reply->contents);
*origin_index = -1;
for (int i = 0; i < numhops; i++) {
/* Since the encryption is just XORing with the cipher
* stream encryption is identical to decryption */
r = wrap_onionreply(tmpctx, &shared_secrets[i], r);
/* Check if the HMAC matches, this means that this is
* the origin */
subkey_from_hmac("um", &shared_secrets[i], &key);
compute_hmac(&key, r->contents + sizeof(hmac.bytes),
tal_count(r->contents) - sizeof(hmac.bytes),
NULL, 0, &hmac);
if (memcmp(hmac.bytes, r->contents, sizeof(hmac.bytes)) == 0) {
*origin_index = i;
break;
}
}
if (*origin_index == -1) {
return NULL;
}
cursor = r->contents + sizeof(hmac);
max = tal_count(r->contents) - sizeof(hmac);
msglen = fromwire_u16(&cursor, &max);
if (msglen > ONION_REPLY_SIZE) {
return NULL;
}
final = tal_arr(ctx, u8, msglen);
if (!fromwire(&cursor, &max, final, msglen))
return tal_free(final);
return final;
}
struct onionpacket *sphinx_decompress(const tal_t *ctx,
const struct sphinx_compressed_onion *src,
const struct secret *shared_secret)
{
struct onionpacket *res = tal(ctx, struct onionpacket);
size_t srclen = tal_bytelen(src->routinginfo);
size_t prefill_size = ROUTING_INFO_SIZE - srclen;
res->version = src->version;
res->ephemeralkey = src->ephemeralkey;
res->hmac = src->hmac;
/* Decompress routinginfo by copying the unmodified prefix, setting
* the compressed suffix to 0x00 bytes and then xoring the obfuscation
* stream in place. */
res->routinginfo = tal_arrz(res, u8, ROUTING_INFO_SIZE);
memcpy(res->routinginfo, src->routinginfo, srclen);
sphinx_prefill_stream_xor(res->routinginfo + srclen, prefill_size,
shared_secret);
return res;
}
struct sphinx_compressed_onion *
sphinx_compress(const tal_t *ctx, const struct onionpacket *packet,
const struct sphinx_path *path)
{
struct sphinx_compressed_onion *res;
size_t payloads_size = sphinx_path_payloads_size(path);
/* We can't compress an onion that doesn't have a rendez-vous node. */
if (path->rendezvous_id == NULL)
return NULL;
res = tal(ctx, struct sphinx_compressed_onion);
res->version = packet->version;
res->ephemeralkey = packet->ephemeralkey;
res->hmac = packet->hmac;
res->routinginfo = tal_arr(res, u8, payloads_size);
memcpy(res->routinginfo, packet->routinginfo, payloads_size);
return res;
}
u8 *sphinx_compressed_onion_serialize(const tal_t *ctx, const struct sphinx_compressed_onion *onion)
{
size_t routelen = tal_bytelen(onion->routinginfo);
size_t len = VERSION_SIZE + PUBKEY_SIZE + routelen + HMAC_SIZE;
u8 *dst = tal_arr(ctx, u8, len);
u8 der[PUBKEY_CMPR_LEN];
int p = 0;
pubkey_to_der(der, &onion->ephemeralkey);
write_buffer(dst, &onion->version, VERSION_SIZE, &p);
write_buffer(dst, der, PUBKEY_SIZE, &p);
write_buffer(dst, onion->routinginfo, routelen, &p);
write_buffer(dst, onion->hmac.bytes, sizeof(onion->hmac.bytes), &p);
assert(p == len);
return dst;
}
struct sphinx_compressed_onion *
sphinx_compressed_onion_deserialize(const tal_t *ctx, const u8 *src)
{
const u8 *cursor = src;
size_t max = tal_bytelen(src);
struct sphinx_compressed_onion *dst =
tal(ctx, struct sphinx_compressed_onion);
/* This is not a compressed onion, so let's not parse it. */
if (max > TOTAL_PACKET_SIZE(ROUTING_INFO_SIZE))
return tal_free(dst);
dst->version = fromwire_u8(&cursor, &max);
if (dst->version != 0x00)
return tal_free(dst);
fromwire_pubkey(&cursor, &max, &dst->ephemeralkey);
dst->routinginfo = fromwire_tal_arrn(dst, &cursor, &max, max - HMAC_SIZE);
fromwire_hmac(&cursor, &max, &dst->hmac);
/* If at any point we failed to pull from the serialized compressed
* onion the entire deserialization is considered to have failed. */
if (cursor == NULL)
return tal_free(dst);
return dst;
}