/* This is the full channel routines, with HTLC support. */ #ifndef LIGHTNING_LIGHTNINGD_CHANNEL_FULL_CHANNEL_H #define LIGHTNING_LIGHTNINGD_CHANNEL_FULL_CHANNEL_H #include "config.h" #include #include #include /** * new_channel: Given initial fees and funding, what is initial state? * @ctx: tal context to allocate return value from. * @funding_txid: The commitment transaction id. * @funding_txout: The commitment transaction output number. * @funding_satoshis: The commitment transaction amount. * @local_msatoshi: The amount for the local side (remainder goes to remote) * @feerate_per_kw: feerate per kiloweight (satoshis) for the commitment * transaction and HTLCS * @local: local channel configuration * @remote: remote channel configuration * @local_basepoints: local basepoints. * @remote_basepoints: remote basepoints. * @local_fundingkey: local funding key * @remote_fundingkey: remote funding key * @funder: which side initiated it. * * Returns state, or NULL if malformed. */ struct channel *new_channel(const tal_t *ctx, const struct sha256_double *funding_txid, unsigned int funding_txout, u64 funding_satoshis, u64 local_msatoshi, u32 feerate_per_kw, const struct channel_config *local, const struct channel_config *remote, const struct basepoints *local_basepoints, const struct basepoints *remote_basepoints, const struct pubkey *local_funding_pubkey, const struct pubkey *remote_funding_pubkey, enum side funder); /** * channel_txs: Get the current commitment and htlc txs for the channel. * @ctx: tal context to allocate return value from. * @channel: The channel to evaluate * @htlc_map: Pointer to htlcs for each tx output (allocated off @ctx). * @wscripts: Pointer to array of wscript for each tx returned (alloced off @ctx) * @per_commitment_point: Per-commitment point to determine keys * @commitment_number: The index of this commitment. * @side: which side to get the commitment transaction for * * Returns the unsigned commitment transaction for the committed state * for @side, followed by the htlc transactions in output order and * fills in @htlc_map, or NULL on key derivation failure. */ struct bitcoin_tx **channel_txs(const tal_t *ctx, const struct htlc ***htlcmap, const u8 ***wscripts, const struct channel *channel, const struct pubkey *per_commitment_point, u64 commitment_number, enum side side); /** * actual_feerate: what is the actual feerate for the local side. * @channel: The channel state * @theirsig: The other side's signature * * The fee calculated on a commitment transaction is a worst-case * approximation. It's also possible that the desired feerate is not * met, because the initiator sets it while the other side is adding many * htlcs. * * This is the fee rate we actually care about, if we're going to check * whether it's actually too low. */ uint32_t actual_feerate(const struct channel *channel, const struct signature *theirsig); enum channel_add_err { /* All OK! */ CHANNEL_ERR_ADD_OK, /* Bad expiry value */ CHANNEL_ERR_INVALID_EXPIRY, /* Not really a failure, if expected: it's an exact duplicate. */ CHANNEL_ERR_DUPLICATE, /* Same ID, but otherwise different. */ CHANNEL_ERR_DUPLICATE_ID_DIFFERENT, /* Would exceed the specified max_htlc_value_in_flight_msat */ CHANNEL_ERR_MAX_HTLC_VALUE_EXCEEDED, /* Can't afford it */ CHANNEL_ERR_CHANNEL_CAPACITY_EXCEEDED, /* HTLC is below htlc_minimum_msat */ CHANNEL_ERR_HTLC_BELOW_MINIMUM, /* HTLC would push past max_accepted_htlcs */ CHANNEL_ERR_TOO_MANY_HTLCS, }; /** * channel_add_htlc: append an HTLC to channel if it can afford it * @channel: The channel * @offerer: the side offering the HTLC (to the other side). * @id: unique HTLC id. * @msatoshi: amount in millisatoshi. * @cltv_expiry: block number when HTLC can no longer be redeemed. * @payment_hash: hash whose preimage can redeem HTLC. * @routing: routing information (copied) * * If this returns CHANNEL_ERR_NONE, the fee htlc was added and * the output amounts adjusted accordingly. Otherwise nothing * is changed. */ enum channel_add_err channel_add_htlc(struct channel *channel, enum side sender, u64 id, u64 msatoshi, u32 cltv_expiry, const struct sha256 *payment_hash, const u8 routing[TOTAL_PACKET_SIZE]); /** * channel_get_htlc: find an HTLC * @channel: The channel * @offerer: the side offering the HTLC. * @id: unique HTLC id. */ struct htlc *channel_get_htlc(struct channel *channel, enum side sender, u64 id); enum channel_remove_err { /* All OK! */ CHANNEL_ERR_REMOVE_OK, /* No such HTLC. */ CHANNEL_ERR_NO_SUCH_ID, /* Already have fulfilled it */ CHANNEL_ERR_ALREADY_FULFILLED, /* Preimage doesn't hash to value. */ CHANNEL_ERR_BAD_PREIMAGE, /* HTLC is not committed */ CHANNEL_ERR_HTLC_UNCOMMITTED, /* HTLC is not committed and prior revoked on both sides */ CHANNEL_ERR_HTLC_NOT_IRREVOCABLE }; /** * channel_fail_htlc: remove an HTLC, funds to the side which offered it. * @channel: The channel state * @owner: the side who offered the HTLC (opposite to that failing it) * @id: unique HTLC id. * * This will remove the htlc and credit the value of the HTLC (back) * to its offerer. */ enum channel_remove_err channel_fail_htlc(struct channel *channel, enum side owner, u64 id); /** * channel_fulfill_htlc: remove an HTLC, funds to side which accepted it. * @channel: The channel state * @owner: the side who offered the HTLC (opposite to that fulfilling it) * @id: unique HTLC id. * * If the htlc exists, is not already fulfilled, the preimage is correct and * HTLC committed at the recipient, this will add a pending change to * remove the htlc and give the value of the HTLC to its recipient, * and return CHANNEL_ERR_FULFILL_OK. Otherwise, it will return another error. */ enum channel_remove_err channel_fulfill_htlc(struct channel *channel, enum side owner, u64 id, const struct preimage *preimage); /** * approx_max_feerate: what's the we (initiator) could raise fee rate to? * @channel: The channel state * * This is not exact! To check if their offer is valid, use can_afford_feerate. */ u64 approx_max_feerate(const struct channel *channel); /** * can_afford_feerate: could the initiator pay for the fee at fee_rate? * @channel: The channel state * @feerate_per_kw: the new fee rate proposed */ bool can_afford_feerate(const struct channel *channel, u64 feerate_per_kw); /** * adjust_fee: Change fee rate. * @channel: The channel state * @feerate_per_kw: fee in satoshi per 1000 bytes. * @side: which side to adjust. */ void adjust_fee(struct channel *channel, u64 feerate_per_kw, enum side side); /** * channel_sending_commit: commit all remote outstanding changes. * @channel: the channel * @htlcs: initially-empty tal_arr() for htlcs which changed state. * * This is where we commit to pending changes we've added; returns true if * anything changed for the remote side (if not, don't send!) */ bool channel_sending_commit(struct channel *channel, const struct htlc ***htlcs); /** * channel_rcvd_revoke_and_ack: accept ack on remote committed changes. * @channel: the channel * @htlcs: initially-empty tal_arr() for htlcs which changed state. * * This is where we commit to pending changes we've added; returns true if * anything changed for our local commitment (ie. we have pending changes). */ bool channel_rcvd_revoke_and_ack(struct channel *channel, const struct htlc ***htlcs); /** * channel_rcvd_commit: commit all local outstanding changes. * @channel: the channel * @htlcs: initially-empty tal_arr() for htlcs which changed state. * * This is where we commit to pending changes we've added; returns true if * anything changed for our local commitment (ie. we had pending changes). */ bool channel_rcvd_commit(struct channel *channel, const struct htlc ***htlcs); /** * channel_sending_revoke_and_ack: sending ack on local committed changes. * @channel: the channel * * This is where we commit to pending changes we've added. Returns true if * anything changed for the remote commitment (ie. send a new commit).*/ bool channel_sending_revoke_and_ack(struct channel *channel); /** * channel_awaiting_revoke_and_ack: are we waiting for revoke_and_ack? * @channel: the channel * * If true, we can't send a new commit message. */ bool channel_awaiting_revoke_and_ack(const struct channel *channel); /** * channel_has_htlcs: are there any (live) HTLCs at all in channel? * @channel: the channel */ bool channel_has_htlcs(const struct channel *channel); /** * channel_force_htlcs: force these htlcs into the (new) channel * @channel: the channel * @htlcs: the htlcs to add (tal_arr) * @hstates: the states for the htlcs (tal_arr of same size) * @fulfilled: htlcs of those which are fulfilled * @fulfilled_sides: sides for ids in @fulfilled * @failed: htlcs of those which are failed * @failed_sides: sides for ids in @failed * * This is used for restoring a channel state. */ bool channel_force_htlcs(struct channel *channel, const struct added_htlc *htlcs, const enum htlc_state *hstates, const struct fulfilled_htlc *fulfilled, const enum side *fulfilled_sides, const struct failed_htlc *failed, const enum side *failed_sides); /** * dump_htlcs: debugging dump of all HTLCs * @channel: the channel * @prefix: the prefix to prepend to each line. * * Uses status_trace() on every HTLC. */ void dump_htlcs(const struct channel *channel, const char *prefix); #endif /* LIGHTNING_LIGHTNINGD_CHANNEL_FULL_CHANNEL_H */