#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void hkdf_two_keys(struct secret *out1, struct secret *out2, const struct secret *in1, const struct secret *in2) { /* BOLT #8: * * * `HKDF(salt,ikm)`: a function defined in * `RFC 5869`[3](#reference-3), evaluated with a * zero-length `info` field * * All invocations of `HKDF` implicitly return 64 bytes of * cryptographic randomness using the extract-and-expand component * of the `HKDF`. */ struct secret okm[2]; BUILD_ASSERT(sizeof(okm) == 64); hkdf_sha256(okm, sizeof(okm), in1, sizeof(*in1), in2, sizeof(*in2), NULL, 0); *out1 = okm[0]; *out2 = okm[1]; } static void maybe_rotate_key(u64 *n, struct secret *k, struct secret *ck) { struct secret new_k, new_ck; /* BOLT #8: * * A key is to be rotated after a party encrypts or decrypts 1000 times * with it (i.e. every 500 messages). This can be properly accounted * for by rotating the key once the nonce dedicated to it * exceeds 1000. */ if (*n != 1000) return; /* BOLT #8: * * Key rotation for a key `k` is performed according to the following * steps: * * 1. Let `ck` be the chaining key obtained at the end of Act Three. * 2. `ck', k' = HKDF(ck, k)` * 3. Reset the nonce for the key to `n = 0`. * 4. `k = k'` * 5. `ck = ck'` */ hkdf_two_keys(&new_ck, &new_k, ck, k); #ifdef SUPERVERBOSE status_debug("# 0x%s, 0x%s = HKDF(0x%s, 0x%s)", tal_hexstr(trc, &new_ck, sizeof(new_ck)), tal_hexstr(trc, &new_k, sizeof(new_k)), tal_hexstr(trc, ck, sizeof(*ck)), tal_hexstr(trc, k, sizeof(*k))); #endif *ck = new_ck; *k = new_k; *n = 0; } static void le64_nonce(unsigned char *npub, u64 nonce) { /* BOLT #8: * * ...with nonce `n` encoded as 32 zero bits, followed by a * *little-endian* 64-bit value. Note: this follows the Noise Protocol * convention, rather than our normal endian */ le64 le_nonce = cpu_to_le64(nonce); const size_t zerolen = crypto_aead_chacha20poly1305_ietf_NPUBBYTES - sizeof(le_nonce); BUILD_ASSERT(crypto_aead_chacha20poly1305_ietf_NPUBBYTES >= sizeof(le_nonce)); /* First part is 0, followed by nonce. */ memset(npub, 0, zerolen); memcpy(npub + zerolen, &le_nonce, sizeof(le_nonce)); } u8 *cryptomsg_decrypt_body(const tal_t *ctx, struct crypto_state *cs, const u8 *in) { unsigned char npub[crypto_aead_chacha20poly1305_ietf_NPUBBYTES]; unsigned long long mlen; size_t inlen = tal_count(in); u8 *decrypted; if (inlen < 16) return NULL; decrypted = tal_arr(ctx, u8, inlen - 16); le64_nonce(npub, cs->rn++); /* BOLT #8: * * 5. Decrypt `c` (using `ChaCha20-Poly1305`, `rn`, and `rk`), to * obtain decrypted plaintext packet `p`. * * The nonce `rn` MUST be incremented after this step. */ if (crypto_aead_chacha20poly1305_ietf_decrypt(decrypted, &mlen, NULL, memcheck(in, inlen), inlen, NULL, 0, npub, cs->rk.data) != 0) { /* FIXME: Report error! */ return tal_free(decrypted); } assert(mlen == tal_count(decrypted)); maybe_rotate_key(&cs->rn, &cs->rk, &cs->r_ck); return decrypted; } bool cryptomsg_decrypt_header(struct crypto_state *cs, u8 hdr[18], u16 *lenp) { unsigned char npub[crypto_aead_chacha20poly1305_ietf_NPUBBYTES]; unsigned long long mlen; be16 len; le64_nonce(npub, cs->rn++); /* BOLT #8: * * 2. Let the encrypted length prefix be known as `lc`. * 3. Decrypt `lc` (using `ChaCha20-Poly1305`, `rn`, and `rk`), to * obtain the size of the encrypted packet `l`. * * A zero-length byte slice is to be passed as the AD * (associated data). * * The nonce `rn` MUST be incremented after this step. */ if (crypto_aead_chacha20poly1305_ietf_decrypt((unsigned char *)&len, &mlen, NULL, memcheck(hdr, 18), 18, NULL, 0, npub, cs->rk.data) != 0) { /* FIXME: Report error! */ return false; } assert(mlen == sizeof(len)); *lenp = be16_to_cpu(len); return true; } u8 *cryptomsg_encrypt_msg(const tal_t *ctx, struct crypto_state *cs, const u8 *msg TAKES) { unsigned char npub[crypto_aead_chacha20poly1305_ietf_NPUBBYTES]; unsigned long long clen, mlen = tal_count(msg); be16 l; int ret; u8 *out; out = tal_arr(ctx, u8, sizeof(l) + 16 + mlen + 16); /* BOLT #8: * * In order to encrypt and send a Lightning message (`m`) to the * network stream, given a sending key (`sk`) and a nonce (`sn`), the * following steps are completed: * * 1. Let `l = len(m)`. * * where `len` obtains the length in bytes of the Lightning * message * * 2. Serialize `l` into 2 bytes encoded as a big-endian integer. */ l = cpu_to_be16(mlen); /* BOLT #8: * * 3. Encrypt `l` (using `ChaChaPoly-1305`, `sn`, and `sk`), to obtain * `lc` (18 bytes) * * The nonce `sn` is encoded as a 96-bit little-endian number. As * the decoded nonce is 64 bits, the 96-bit nonce is encoded as: * 32 bits of leading 0s followed by a 64-bit value. * * The nonce `sn` MUST be incremented after this step. * * A zero-length byte slice is to be passed as the AD (associated data). */ le64_nonce(npub, cs->sn++); ret = crypto_aead_chacha20poly1305_ietf_encrypt(out, &clen, (unsigned char *) memcheck(&l, sizeof(l)), sizeof(l), NULL, 0, NULL, npub, cs->sk.data); assert(ret == 0); assert(clen == sizeof(l) + 16); #ifdef SUPERVERBOSE status_debug("# encrypt l: cleartext=0x%s, AD=NULL, sn=0x%s, sk=0x%s => 0x%s", tal_hexstr(trc, &l, sizeof(l)), tal_hexstr(trc, npub, sizeof(npub)), tal_hexstr(trc, &cs->sk, sizeof(cs->sk)), tal_hexstr(trc, out, clen)); #endif /* BOLT #8: * * 4. Finally, encrypt the message itself (`m`) using the same * procedure used to encrypt the length prefix. Let * encrypted ciphertext be known as `c`. * * * The nonce `sn` MUST be incremented after this step. */ le64_nonce(npub, cs->sn++); ret = crypto_aead_chacha20poly1305_ietf_encrypt(out + clen, &clen, memcheck(msg, mlen), mlen, NULL, 0, NULL, npub, cs->sk.data); assert(ret == 0); assert(clen == mlen + 16); #ifdef SUPERVERBOSE status_debug("# encrypt m: cleartext=0x%s, AD=NULL, sn=0x%s, sk=0x%s => 0x%s", tal_hexstr(trc, msg, mlen), tal_hexstr(trc, npub, sizeof(npub)), tal_hexstr(trc, &cs->sk, sizeof(cs->sk)), tal_hexstr(trc, out + CRYPTOMSG_HDR_SIZE, clen)); #endif maybe_rotate_key(&cs->sn, &cs->sk, &cs->s_ck); if (taken(msg)) tal_free(msg); return out; }